

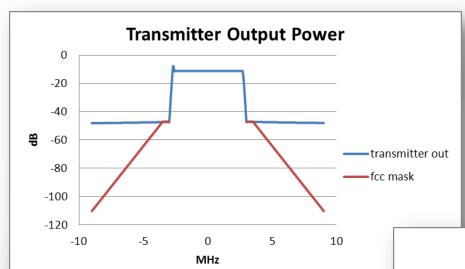
Band-Tunable TV Mask Filters and FM combiners

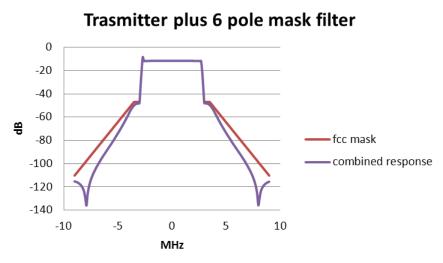
Presented by: Dan Fallon Sr. RF Engineer

WBA Broadcasters Clinic October 2015

Overview

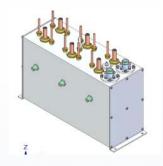
Tunable UHF filters 100 W to 6 kW (ch 14 to E69)


New 20 kW band tunable mask filter (ch 14-51)


FM Combiners

Filter Tuning

Why Mask Filters?



Powerlite Series of Filters

100-250 Watt

600 Watt

3000 Watt With water cooling to 7000 W

1500 Watt

Powerlite Series of Filters

Why Band-tunable?

- Accommodate channel change
- Transmitter is band-tunable
- Transmitter / Filter can be moved from one site to another
- Transportable backup transmitter is feasible
- Common parts for wide channel range
 - Volume manufacturing
 - Parts can be stocked

Why higher power tunable filters?

Cylindrical
Waveguide
Constant
Impedance
Filter (CIF)
1200 pounds
(544 kg)

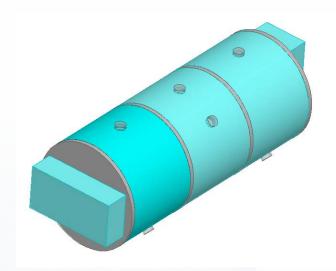
CHANGING CHANNEL?

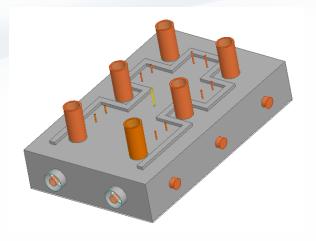
New Product

10 kW (air cooled)
20 kW (water cooled)
3 1/8" and 4 1/16" connections
Tunable filter

Channel 14-51

Weight 105 lbs (48 kg)


Why higher power tunable filters?



- New Solid State Transmitters Approach IOT Efficiency
- Liquid Cooled Transmitters are Becoming More Accepted
- Mask Filters are Generally Average Power Limited (heat)
- Liquid Cooling Available for Filter Using Tx Heat Exchanger
- Additional Heat Load from Filter is about 1 kW
- Solid State Transmitters are OK with Reflective Filter
- IOT Transmitters Need CIF for proper functioning
- Current Solid State Offerings easily band tunable
- Channel 14-51 chosen to accommodate US spectrum auction and channel repack

Why higher power tunable filters?

Dual Mode Cylindrical Waveguide Filter Advantages

Low Loss (~97% efficiency)

Free Convection Cooling

Dis-Advantages

Large, Heavy

Cavities cut to order

Coaxial Cavity Band Tunable Filter
Advantages

Smaller, Lighter

Parts can be stocked

Dis-Advantages

Higher Loss (~93% efficiency)

Requires water cooling

New Filter Specs

Channel Range 14-51

Number of Poles 6

Mask ATSC full

I/O connectors 3 1/8" or 4 1/16"

Input Power Rating 20 kW or 25 kW

Insertion Loss 0.27 dB max fc

0.38 dB max ±2.69 MHz

Effective Loss 0.29 dB max

(93%-95% efficiency)

Group Delay Var. 150 ns (fc±2.69 MHz)

Input Return Loss 26 dB min (fc±2.7 MHz)

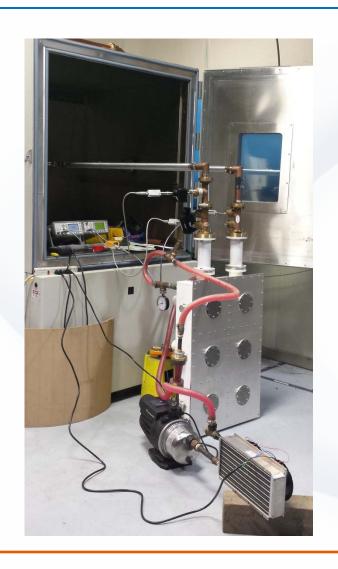
Ambient Temp Range 0°C to 40°C

(32°F to 104°F)

Max Water Temp 35°C (95°F)

Temp Rise at Full Pwr 27-63°C (80-145°F)

Size 40 in x 25 in x 15 in

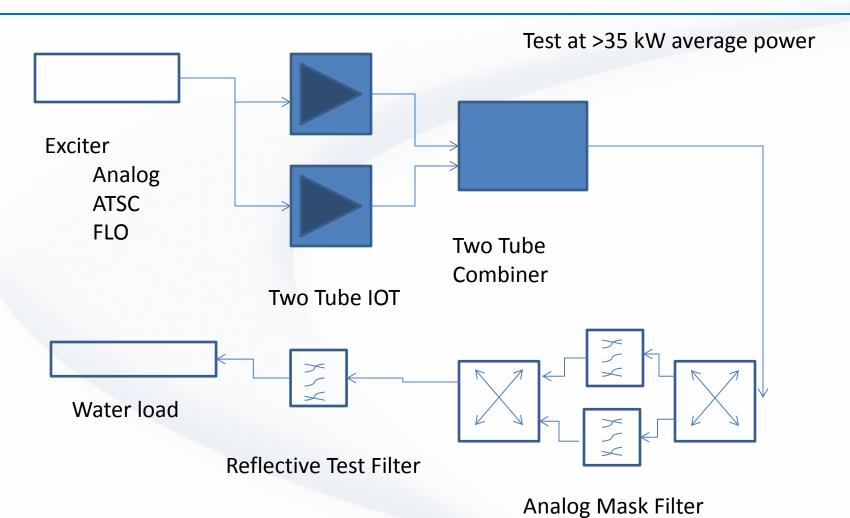

(102 cm x 64 cm x 38 cm)

Weight 105 lbs (48 kg)

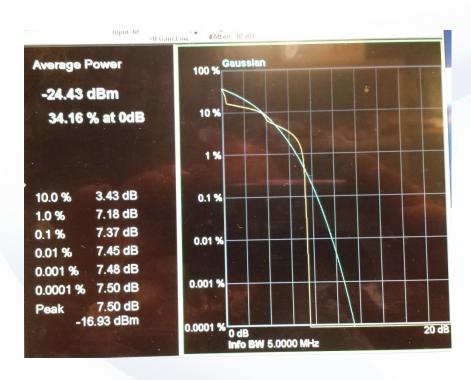
Power Testing

At Dielectric Factory at 9kW ATSC and 9kW DVB-T (6 MHz)

Power Testing



At WPFO – Litchfield, ME Special Thanks WPFO/WGME (Sinclair)

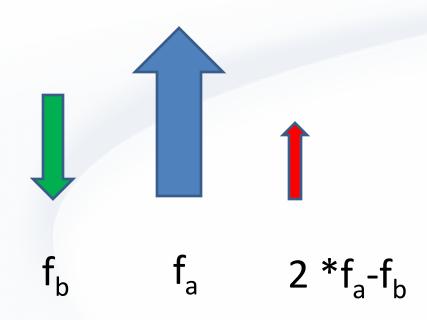

Power Testing - WPFO

Power CCDF

Analog (w/ adjusted aural and APL)

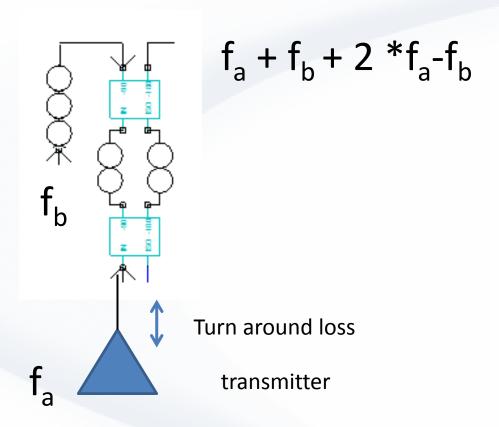
DVB-T

FM Channel Combiners

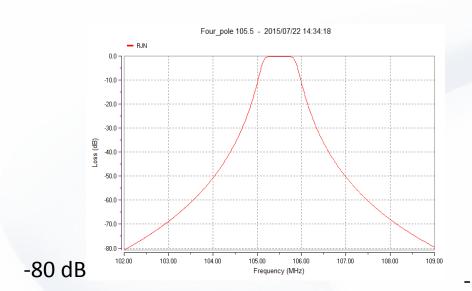

Allow multiple FM stations to broadcast from the same antenna

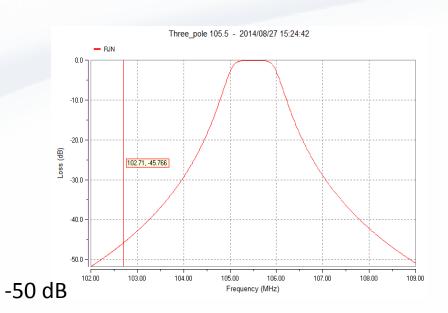
2-10 channels; 3 kW to 60 kW per station

Intermodulation products in FM transmitters



IM product falls in FM broadcast or air navigation band Can interfere with neighboring broadcasters or airports


Filter Rejection Controls IM level



Filter Rejection

4 pole filter response

3 pole filter response

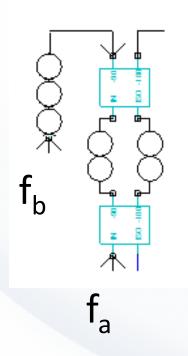
Filter Rejection and combiner channel spacing

FM Filter Rejection

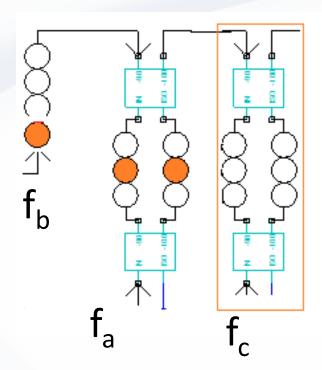
# of	dB Rejection at spacing from fo							
poles	0.8 MHz	1.2 MHz	1.6 MHz	2.0 MHz	2.4 MHz	2.8 MHz	4.4 MHz	10.2 MHz
2	1	4	8	11	14	17	25	50
3	12	22	30	36	40	45	57	> 80
4	30	43	54	62	68	73	> 80	> 80
5	45	65	78	87	95	102	>80	>80

IM rejection calculation

CIF = 2 x Rejection + 30 dB


manifold = 2 x rejection

Minimum channel spacing to get -80 dB min IM rejection:


	spacing in MHz				
poles	CIF	manifold			
2	4.4	10.2			
3	1.6	2.4			
4	0.8	1.2			
5	any	0.8			

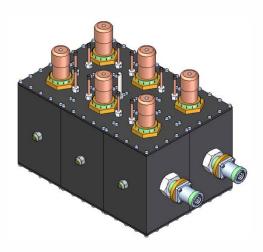
Combiner upgrade to add new channel

Original combiner For 4.8 MHz channel spacing

Upgraded combiner For 1.6 MHz channel spacing

Common cavities make field upgrade viable




Add filter cavity and change iris plates, retune

Filter Tuning


Patience Required!

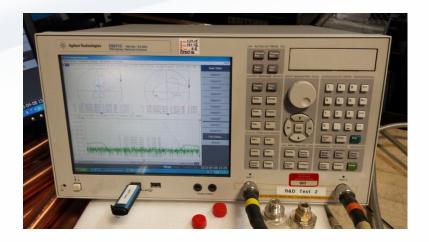
Tuning Options

- Buy or rent vector network analyzer (VNA) and try it your self
- Hire qualified field engineer
- Work with station group to use central engineer / VNA and exchange filters
- Return filter to factory for re-tuning

Tuning Procedures

Available at www.dielectric.com

Equipment Needed

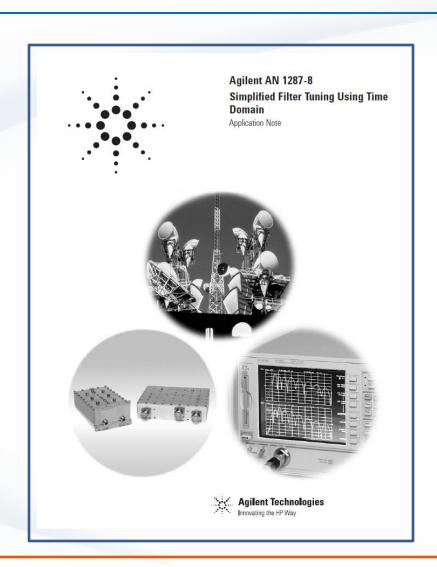


Vector Network Analyzer (VNA) purchase

- Keysight Technologies (formerly Agilent)
- Rohde & Swarz
- Anritsu
- Advantest
- Copper Mountain

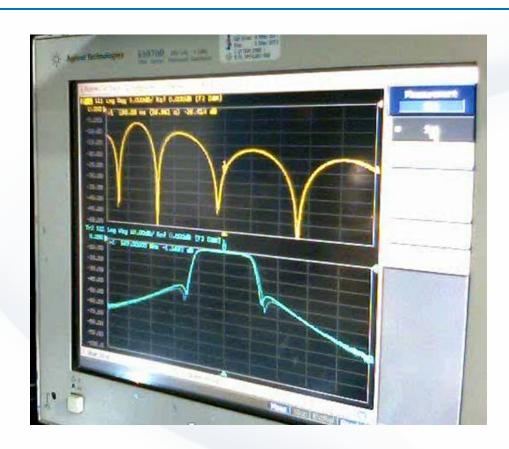
VNA Rental

- Electro-rent
- Test Equity
- Advanced Test Equipment Rentals
- Metric Test
- TRS-RenTelco



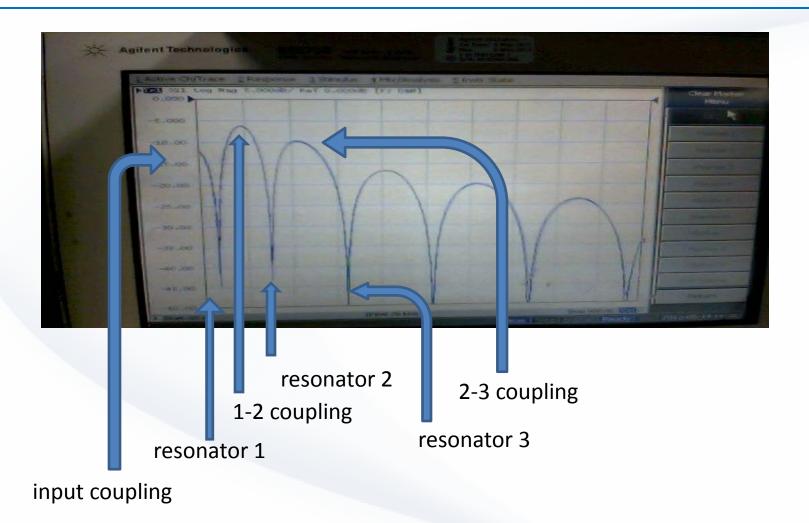
- Calibration Kit and Cables
- Adaptors type N to 7-16
 Or type N to 1 5/8" or 3 1/8"
- Allen keys and standard wrenches

Time Domain Tuning



- Time domain tuning
- Agilent (key sight) app note AN1287-8
- Requires VNA with time domain transform (TDR) option
- Response in time domain corresponds to each physical adjustment

Time Domain Tuning



- Important Step 1: Before making any adjustments on tuned filter save :
- input return loss (S11)
- transmission response (S21)
- output return loss (S22) to VNA memory

These memory traces will serve as template for tuning the filter at the new channel

Time domain – S11 response

Conclusions

- Powerlite filter series (100 W to 7 kW)
 - UHF Band tunable (470-860 MHz)
- New Higher Power tunable filter
 - 10 kW convection, 20 kW water cooled
 - Ch 14-51
- FM Combiners
 - Impact filter has on IM generation
 - Combiner upgrade to add channels
- Filter Tuning
 - Field Engineer or station group RF expert
 - Having spare filter for station group makes sense

Questions

