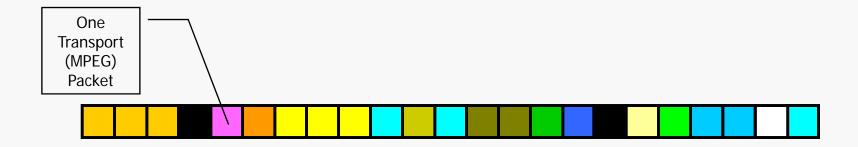
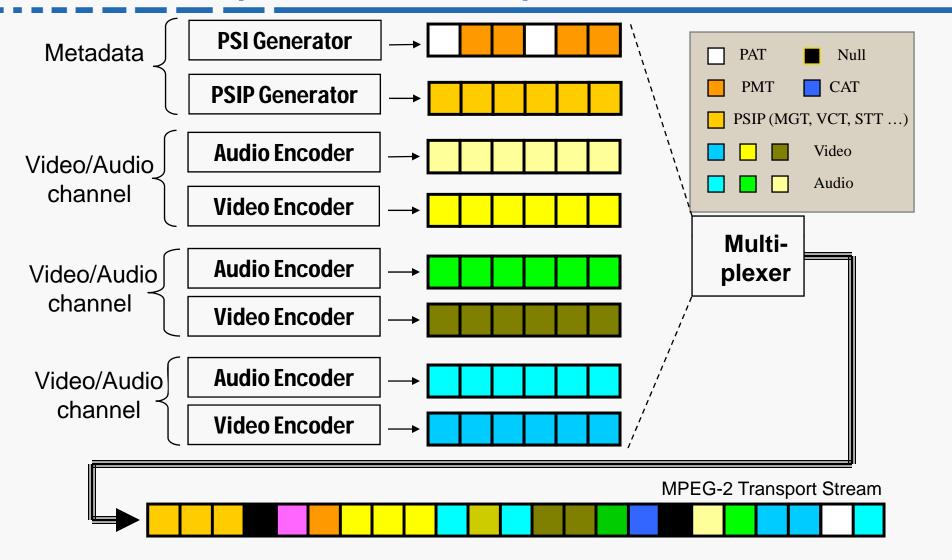


Agenda

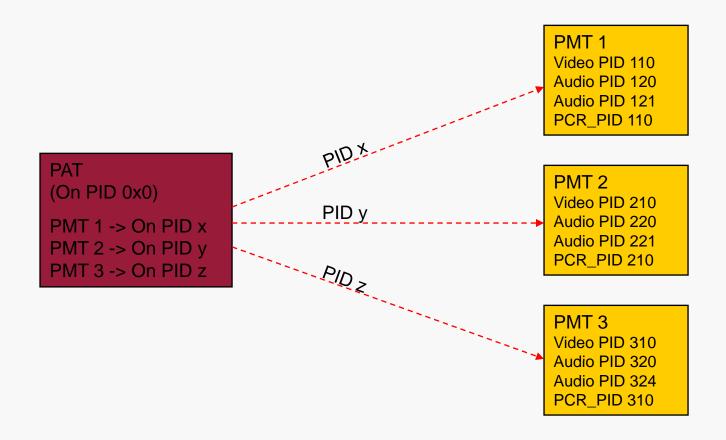

- DTV Stream Basics
- Why Monitor Transport Streams?
- Goals
- Background
- Emphasis
- ATSC Recommended Practice
- Example
- Summary

MPEG-2 Transport Stream


- Made up of 188-byte transport packets, each with 4 byte header & 184 byte payload
- Conveys multiple interleaved elementary streams -audio, video, data, PSI, ...
- Elementary stream to which each packet belongs is identified by *packet id* (PID) in packet header.

ATSC Transport Stream Multiplex

PSI tables - defined


PSI – Program Specific Information

- PAT Program Association Table Appears in PID 0x0000. Identifies MPEG-2 *programs* in transport stream and gives PIDs for their PMTs.
- PMT Program Map Table Identifies elementary streams in program (virtual channel), and gives their PIDs.
- CAT Conditional Access Table Contains information about the encryption method used by your network

PSI Overview

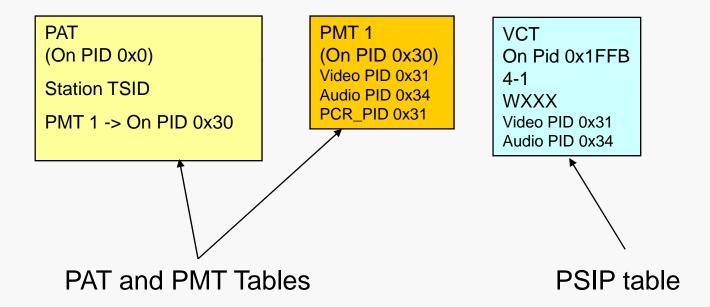
PSIP

- Branding Station call letters and Channel number
- Signaling V-Chip data, information about audio and Video PID's
- Announcement Program Guide

PSIP Base Tables

- MGT Master Guide Table
 - Appears in PID 0x1FFB.
 - Gives PIDs, sizes, and version numbers of other PSIP tables (except STT).
- STT System Time Table
 - Appears in PID 0x1FFB
 - Gives current UTC time.
- TVCT or CVCT Virtual Channel Table
 - Identifies and describes virtual channels.
- RRT Rating Region Table
 - Describes content advisory system(s) being used to rate events.

Other PSIP PID's


- EIT Event Information Table
 - Gives titles, start times, durations, content advisory ratings of events (TV programs).
- ETT Extended Text Table
 - Gives extended textual descriptions of virtual channels and events.

PSIP and **PSI** Link

Table Information for a Television Broadcast Stream

Why Monitor Transport Streams?

- From a viewer's point, DTV must "Just plain work."
- Broadcaster must be aware of any problems in emission transport
 - Awareness of problems before viewers is a "good thing"
 - STB/Receiver method simply doesn't work
- Monitoring the transport for conformance allows reduction in
 - Fault Detection Time
 - Fault Isolation Time
 - Total Service Impairment time
- Monitoring allows for higher quality product

Common DTV System Defects

- PSI/SI/PSIP tables missing, incorrectly formatted, incomplete and/or inconsistent
- Excessive jitter in PCR values
- Audio or video buffer underflow or overflow
- Audio or video program element(s) missing
- Incorrect audio/video synchronization



Common causes of defects

- Initial setup / configuration
- Equipment drift
- Equipment failures
- Communication link failures
- Loss of synchronization
- Oops"

Consequences of Defects

- DTV receivers have trouble tuning
- No information in on-screen program guide
- Programs missing
- Picture or sound breaks up
- Picture or sound absent
- Noticeable "lip sync" errors
- Upset viewers
 - Phone calls

A/78 Goals

- Create a set of recommendations for monitoring emission bitstreams
 - Which elements & parameters of A/53 and A/65 should be verified?
- Create a set of recommendations that provide valuable guidance for broadcasters
- Create a set of recommendations that allow for freedoms of implementation

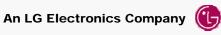
Emphasis

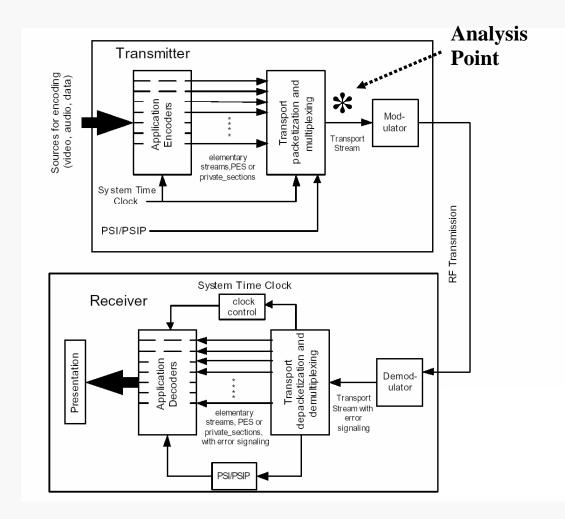
Create verification methodology that best benefits the users

- Graduated scale:
 - Most importance for errors that cause viewer problems
 - Least importance for errors that viewers are not aware of
- Categorization
 - Group errors into categories that will help uncover problem source
- Reduce false alarms
 - Alarms for "don't-care" situations causes operator fatigue
 - which increases probability that important alarms will be ignored

Background

- ETSI TR 101 290
 - Measurement Guide Lines for DVB Systems
 - Three severity levels
 - Priority 1: Errors that affect integrity and decodability of transport stream
 - Priority 2: Errors that affect individual programs
 - Priority 3: Application level errors program elements / SI tables
 - Written around DVB standards not directly applicable to **ATSC** broadcasts
- Everything is black/white
 - Measurement is "in spec" / "out of spec"
 - No gradations in between




ATSC Recommended Practice

- Result of work by TSG-1 AdHoc within TSG committee
- Drew upon available resources
 - DVB
 - Test Equipment manufacturers
 - Encoding and receiver manufacturers
 - Broadcasters
- Approved by ATSC as A/78
 - Equivalent RP approved by SCTE as SCTE-142

Reference Analysis Point

Conceptual view

Real systems may differ

RF not addressed

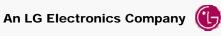
Enhanced VSB not addressed

Categories

- PSI Errors
 - PAT, PMT
- PSIP Errors
 - MGT, TVCT, CVCT, RRT, EIT & ETT, STT
- Timing & Buffer errors
 - PCR, PTS, Buffer
- Consistency Errors
 - Mismatches between tables, missing pointers, DST problems...
- General Errors
 - Sync byte, continuity count, multiple MRDs, PID value ranges, missing descriptors

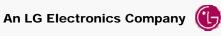
Error Severity

- 5 Levels of severity
 - TS Off Air (TOA)
 - Program Off Air (POA)
 - Component Missing (CM)
 - Quality Of Service (QOS)
 - Technically Non-Conformant (TNC)



TOA

- Transport stream Off Air
- Errors are severe enough that the transport stream is damaged beyond utility
- Receivers can't tune and decode broadcast
- Example absence of sync bytes
- F"Get up & run"



POA

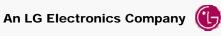
- Program Off Air
- A virtual channel is flawed to the point where the service is off air
- Receivers can't tune to or decode the contents of the virtual channel
- Example: Missing entry in VCT for the virtual channel
- F"Get up & run"

CM

- Component Missing
- An element of a virtual channel is flawed
- Receiver can't find/decode the program element
- Example: Mismatch between the video PID signaled in the SLD and the actual PID in the video TS packets
- Note: Some PSIP elements are included
- "Get up & run"

QOS

- Quality Of Service
- Parameters out of spec by amount where significant number of receivers can be expected to produce flawed outputs
- Broadcast may still be viewable, but exhibits degradation
- Example: VCT cycle time somewhat larger than spec resulting in slower than normal tuning
- "Walk slowly"



TNC

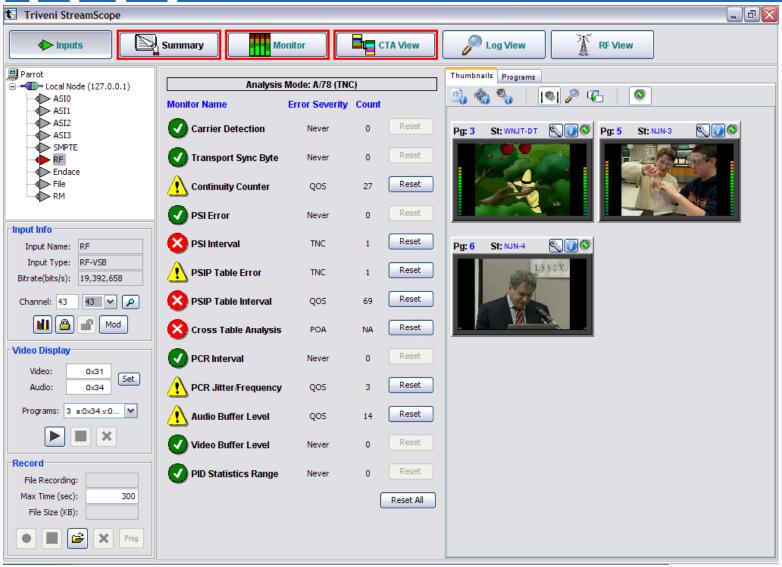
- Technically Non-Conformant
- Violates the letter of the standards, but has little effect on viewing experience
- Example: A single instance of an MGT cycle time of 152ms
- > "When you get a chance"

Example: PAT

Error Condition	Error Qualifier	TOA	POA	CM	QOS	TNC
PAT repetition error	PAT repetition interval error (found between the last 101 and 200 ms)					×
PAT repetition error	PAT repetition interval error (found between the last 201 to 500 ms)				×	×
PAT absence error	PAT not found for 501 ms (or longer)	×	×	×	×	×
PAT syntax error	Packet with PID 0x0000 doesn't have table_id 0x00	×	×	×	×	×

Example: PCR

Error Conditions	Error Qualifier	TOA	POA	СМ	QOS	TNC
PCR Error	Un-signaled PCR discontinuity				Х	Χ
PCR repetition	PCR repetition interval error (101 - 200 ms)					Χ
PCR repetition	PCR repetition interval error (201 - 500 ms)				X	Χ
PCR absence	PCR not found for than 501 ms (or longer)		Х	Χ	Х	Χ
PCR error	PCR inaccuracy (greater than +/- 500 ns and less than or equal to +/- 2500 ns)					Х
PCR error	PCR inaccuracy (greater than +/- 2500 ns)				Х	Х
PCR parameters	PCR frequency offset (greater than 810 Hz and less than or equal to 4050 Hz)					Х
PCR parameters	PCR frequency offset (greater than 4050 Hz)				Х	Х
PCR parameters	PCR frequency drift (greater than 75 mHz/s and less than or equal to 375 mHz/s)					Х
PCR parameters	PCR frequency drift (greater than 375 mHz/s)				X	Х
PCR parameters	PCR overall jitter (greater than 25 μs and less than or equal to 125 μs)					X
parameters A	PCR overall jitter (greater than 125 μs) An LG Electronics Company				Х	X


Example: Consistency Error

Error Conditions	TOA	POA	СМ	QOS	TNC
TSID values in PAT and VCT do not match		Х	Х	Х	Χ
PAT/VCT mismatch (Different number of programs found in VCT than signaled in PAT)		Х		Х	Х
VCT/PMT mismatch (SLD/PMT mismatch)			Х	Х	X
PMT/EIT-0 descriptor mismatch		Х	Х	Х	Χ
ETT syntax errors (ETT has invalid ETM_ID or ETM_ID does not match existing event_id in EIT)			Х	Х	X
Multiple sources of PSI	Х	Х	Х	Х	Χ
Daylight Savings time settings					Χ
Service Location Descriptor missing from VCT		Х	Х	Х	Χ
Dangling source_id		Х	Х	Х	Χ
MGT mismatch (Version number and/or size of tables signaled in				Х	Х
MGT does not match with actual table; PSIP table found in stream, but not signaled in MGT)					

Real World Example

Summary

- ATSC Recommended Practices provides a common methodology for describing bitstream non-conformance
- Methodology has been designed to be the most useful for real-world conditions and considerations
- Use of this methodology can significantly reduce the time required to address system faults

Thanks for your attention, Jian Shen

jshen@trivenidigital.com

www.trivenidigital.com

