Integrating Legacy Equipment into a Modern Infrastructure

A case study at Cumulus Media Chicago Or... How do I marry the 1990's with todays monitoring and control systems.

The issue at hand

WLS-AM, Chicago celebrated 100 years of broadcasting in 2024, and 86 of those years it has been transmitting from the same building in Tinley Park, IL

Much has changed...

The Challenge

- Incompatibility
 - Relays and Optos
 - Serial Data
- Limited Functionality
 - Not everything is available at the provided interface
- Cost of Replacement
 - Old but functional
 - Reality of the state of the business

Strategies for Integration

- Gateway Devices
 - Translate protocols
 - Convert signals
 - Facilitate Communications
- Protocol Conversion
 - A/D conversion
 - RS-232 VT100 Formatted Data to IP
 - Telnet to IP
- Modular Upgrades
 - Standardize on an output format
 - One step at a time

The Recent Past & Today

9

The Recent Past

1989 Continental 317-C3 transmitter. Doherty tube design with 24Vdc control logic tied to a 1978 custom relay based antenna switcher

Today

Nautel NX-50 transmitter. Solid State with SNMP Control, Status and Metering tied to a PLC based antenna switcher

DX-50 Backup

- Installed in 1997 to replace a Harris MW-50.
- 24Vdc Conventional Control logic with Open collector Status tied to 1978 custom relay-based antenna switcher
- Critical control and status moved to new PLC based antenna switcher.
- <u>All</u> available status, control and metering brought out to a panel for distribution.
 - Burk ARC Touch Plus
 - Web based control and monitoring interface

Modules

Web I/O – Commercial product line for web-based monitor and control.

Click PLC – Industrial PLC modules for antenna and transmitter switching.

Serial2TCP - Custom RS232 to IP conversion using a Raspberry Pi with RS232 to USB dongle.

Node Red – Open Source "Swiss Army Knife" to draw the pieces together.

Web I/O

http://controlbyweb.com

Click PLC

CLICK

PWR #

PORT1 TX1 = PORT1 TX1 = PORT1 TX1 = PORT1

102

107V

NOW

PMR

HUN F

PORT

102.4

102

http://automationdirect.com

Serial2TCP

[Unit] Description=TCP to <u>Serial</u>

[Service] TTYPath=/dev/ttyUSB0 ExecStartPre=/bin/stty -F /dev/ttyUSB0 speed 57600 ExecStart=/bin/nc -k -I 4095 StandardInput=tty StandardOutput=tty Restart=always

[Install] WantedBy=default.target 1) Using Netcat to translate COM port input to TCP

2) Can use a Raspberry Pi with RS-232 to USB Dongle

3) A GUI is not needed if you use Cockpit or Webmin

4) Put it on a UPS or a 5V battery backed supply

Node Red

* Drag and drop interface

- * Visual Logic flow
- * Modular construction
- * Web User Interface UI

Node Red

WJBC-AM 1230

Harris DAX1 Web Interface

- Control, Status, Metering
- Fully Customizable

interface

- Separate mobile page
- Uses the DAX 1 RS232

9:50 all 🕆 😡 9:56 🖌 . III 🗢 1920 WJBC-AM 1230 Mobile WJBC-AM 1230 Mobile RF On PA Voltage 1000 W 300 Volts PA Current 4.4 Amps RF On Forward Power Power Baise 1000 1000 W Reflected Power 750 W 10.10.89.135 10.10.89.135

Rpi-5

* DIN Rail case (Amazon)

- * RS-232 \rightarrow TTL Interface (Amazon)
- * WiFi or wired network
- * Full Node-Red or just an Serial to TCP interface

n DX-50

Rpi-4 RC Unit

RPiGPIO16			
o Meter 1 : 4.52 vota 8	RAISE 1	LOWER 1	O Status 1
o Meter 2 : 4.49 volts 8	RAISE 2	LOWER 2	Status 2
o Meter 3 : 4,50 voits s	RAISE 3	LOWER 3	O Status 3
o Meter 4 : 4,50 volts 8	RAISE 4	LOWER 4	Status 4
o Meter 5 : 4,51 volta 8	RAISE 5	LOWER 5	Status 5
o Meter 6 : 4.49 volta s	RAISE 6	LOWER 6	Status 6
o Meter 7 : 4.49 vom 8	RAISE 7	LOWER 7	Status 7
o Meter 8 : 4.50 volts 8	RAISE 8	LOWER 8	Status 8
o Meter 9 : 4.57 volta 8	RAISE 9	LOWER 9	Status 9
o Meter 10 : 4.47 vors a	RAISE 10	LOWER 10	Status 10
o Meter 11 : 4.50 vom s	RAISE 11	LOWER 11	Status 11
o Meter 12 : 4.50 vons *	RAISE 12	LOWER 12	Status 12
o Meter 13 : 4.53 vons a	RAISE 13	LOWER 13	🥥 Status 13
o Meter 14 : 4.54 voits 8	RAISE 14	LOWER 14	Status 14
o Meter 15 : 4.49 vons 8	RAISE 15	LOWER 15	Status 15
o Meter 16 : 4.44 vons 0	RAISE 16	LOWER 16	Status 16

* Rpi 4 using 1-wire interface

* MCP23017 GPIO expansion

* ADS1115 AD conversion

* 16 channel Remote Clone

Thank you Questions?

tim.wright@cumulus.com

https://wlsgit.dyndns.org/explore

